A generalized ground-motion model for consistent mainshock–aftershock intensity measures using successive recurrent neural networks

Author:

Fayaz JawadORCID,Galasso Carmine

Abstract

AbstractSeveral recent studies have investigated the risk posed to structures by earthquake sequences, proposing state-dependent fragility/vulnerability models for assets in damaged conditions. However, a critical component for such efforts, i.e., ground-motion record selection, has received relatively minor consideration. Specifically, utilization of “consistent” mainshock (MS)–aftershock (AS) ground motions is desirable in practical applications. Such consistency in selecting MS–AS sequences requires proper consideration of the correlations between and within the intensity measures of MS and AS ground motions. Most of the studies in this domain utilize spectral accelerations as the considered ground-motion intensity measures and rely on empirical linear correlation models between the intensity measures of MS and AS ground motions for developing, for instance, record selection approaches. This study proposes a generalized ground-motion model (GGMM) to estimate consistent 30 × 1 vectors of intensity measures for mainshocks (denoted as IMMS) and aftershocks (denoted as IMAS) using a framework of successive long-short-term-memory (LSTM) recurrent neural network (RNN). The vectors of IMMS and IMAS consist of geometric means of significant duration ($$D_{5 - 95,geom}$$ D 5 - 95 , g e o m ), Arias intensity ($$I_{a,geom}$$ I a , g e o m ), cumulative absolute velocity ($$CAV_{geom}$$ C A V geom ), peak ground velocity ($$PGV_{geom}$$ P G V geom ), peak ground acceleration ($$PGA_{geom}$$ P G A geom ) and RotD50 spectral acceleration ($$S_{a} \left( T \right)$$ S a T ) at 25 periods for both MS and AS ground motions. The proposed RNN-based GGMM is trained on a carefully selected set of ~ 700 crustal and subduction recorded MS–AS sequences. The inputs to the framework include a 5 × 1 vector of source and site parameters for MS and AS recordings. The residuals of the trained LSTM-based RNN are further used to develop empirical covariance structures for IMMS and IMAS. The proposed framework is finally illustrated to select MS–AS ground motions based on IMMS and IMAS using a multi-criteria objective function. The selected MS–AS ground motion sequences are then used to perform non-linear time-history analyses of a case-study two-spanned symmetric bridge structure. The obtained engineering demand parameters are evaluated and critically discussed.

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3