Fragility analysis of structural pounding between adjacent structures arranged in series with various alignment configurations under near-field earthquakes

Author:

Ebrahimiyan Fahimeh,Hadianfard Mohammad Ali,Naderpour Hosein,Jankowski RobertORCID

Abstract

AbstractA major cause of local to total damages is related to structural pounding in a large number of past earthquakes. In general, these collisions take place as a result of differences in the dynamic characteristics of the colliding structures. To acquire a better perception of the behavior of structures, in this paper, three structures featuring different heights are modeled in series and with various configurations next to each other in OpenSees. To determine the collision effects of the structures, three different configurations of 4-, 8- and 12-story adjacent reinforced concrete special moment resisting frames were considered. Then, by conducting an incremental dynamic analysis, their structural seismic limit state capacities were assessed via 20 near-field record subsets recommended by FEMA-P695. At last, for the above adjacent buildings with various separation distances and configurations, the fragility curves were determined, and the probability of exceedance from the primary Hazus-MH failure criteria was estimated. In addition, the results were compared with those obtained when this phenomenon did not take place for buildings to have a better perception of the pounding phenomenon. The results of the analyses show that arranging adjacent structures in series greatly affects the collapse capacities of the colliding structures. In addition, in the case when the shorter structure is placed in the middle of two taller structures, it results in the most critical situation among all configurations, and in this case, a higher reduction is observed in the structural performance levels.

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3