Geomorphological mapping for liquefaction likelihood: the Piniada Valley case study (central Greece)

Author:

Valkaniotis S.,Rapti D.ORCID,Taftsoglou M.,Papathanassiou G.,Caputo R.

Abstract

AbstractAssessment of liquefaction susceptibility of sediments in alluvial plains is considered one of the first step for infrastructure planning, hazard mitigation, and land use management in seismically active regions. Subtle geomorphological features resulting from depositional processes could greatly contribute to estimating the liquefaction likelihood since they also dictate the type and distribution of sediments. Our case study is from the Piniada Valley (Greece), where widespread liquefaction phenomena were triggered by the 2021 Mw 6.3, Damasi earthquake. As we compiled a detailed geological map for the purposes of this investigation and correlated it to the spatial distribution of the earthquake-induced liquefaction phenomena, we observed that most of liquefaction surface evidence are related to point bars and abandoned river channels formed the last century. In particular, the areal liquefaction density was estimated at 60.7 and 67.1 manifestations per km2, for the point bars and abandoned channels, respectively. Following this outcome, we propose a refinement of the existing liquefaction susceptibility classifications by including point bar bodies as a distinct category, characterized by a very high susceptibility to liquefaction. In addition, we discuss the correlation between the observed liquefaction manifestations and the shallow lithofacies, sand or mud prone areas, within point bars. The outcome arisen by this research is that most of liquefaction phenomena (> 70%) occurred on the area covered by coarser materials deposited on the upstream part of high sinuosity meanders.

Funder

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3