A risk-targeted approach for the seismic design of bridge piers

Author:

Turchetti FrancescaORCID,Tubaldi Enrico,Douglas John,Zanini Mariano Angelo,Dall’Asta Andrea

Abstract

AbstractDesigning a structure to resist earthquakes by targeting an explicit failure risk has been a key research topic over the past two decades. In this article, a risk-targeted design approach is developed for circular reinforced concrete bridge piers, based on a probabilistic optimization procedure aimed at minimising the design resisting moment at the pier base. In order to reduce the computational effort, a surrogate model is developed to describe the influence of two key design parameter (i.e., the pier diameter and the longitudinal reinforcement ratio) on the structural behaviour and performance. The proposed approach is applied in a case study for Italy for target mean annual frequencies of failure selected according to European codes using a probabilistic seismic hazard assessment for average spectral acceleration across a wide range of structural periods. The variation in the design parameters across Italy is considerable because of the large variation in seismic hazard. It is found that in areas of low seismic hazard the level of seismic design required is near the minimum allowed by Eurocode 8 in terms of reinforcement ratio. In areas of the highest seismic hazard much higher reinforcement ratios and pier diameters are required to meet the risk targets. If both pier diameter and longitudinal reinforcement ratios are considered as design parameters then the optimisation procedure may mean adjacent sites have significant different pairs of these parameters as the target can be reached in multiple ways. This problem can be solved by fixing one parameter and optimising the other.

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference73 articles.

1. AASHTO (2010) AASHTO LRFD bridge design specifications. American Association of State Highway and Transportation Officials, Washington

2. Allen TI, Luco A, Halchuk S (2015) Exploring risk-targeted ground motions for the national building code of Canada. In: 11th Canadian conference on earthquake engineering, Victoria, BC

3. Altieri D, Tubaldi E, De Angelis M, Patelli E, Dall’Asta A (2018) Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems. Bull Earthq Eng 16(2):963–982

4. ASCE (2013) Minimum design loads for buildings and other structures. ASCE/SEI 7–10

5. Baker JW, Lin T, Shahi SK, et al. (2011) New ground motion selection procedures and selected motions for the PEER transportation research program. In: PEER technical report 2011/03. Berkeley, Pacific Earthquake Engineering Research Center, University of California, Berkeley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3