Predicting approximate seismic responses in multistory buildings from real-time earthquake source information, for earthquake early warning applications

Author:

Cremen GemmaORCID,Velazquez Omar,Orihuela Benazir,Galasso Carmine

Abstract

AbstractRegional earthquake early warning (EEW) alerts and related risk-mitigation actions are often triggered when the expected value of a ground-motion intensity measure (IM), computed from real-time magnitude and source location estimates, exceeds a predefined critical IM threshold. However, the shaking experienced in mid- to high-rise buildings may be significantly different from that on the ground, which could lead to sub-optimal decision-making (i.e., increased occurrences of false and missed EEW alarms) with the aforementioned strategy. This study facilitates an important advancement in EEW decision-support, by developing empirical models that directly relate earthquake source parameters to resulting approximate responses in multistory buildings. The proposed models can leverage real-time earthquake information provided by a regional EEW system, to provide rapid predictions of structure-specific engineering demand parameters that can be used to more accurately determine whether or not an alert is triggered. We use a simplified continuum building model consisting of a flexural/shear beam combination and vary its parameters to capture a wide range of deformation modes in different building types. We analyse the approximate responses for the building model variations, using Italian accelerometric data and corresponding source parameter information from 54 earthquakes. The resulting empirical prediction equations are incorporated in a real-time Bayesian framework that can be used for building-specific EEW applications, such as (1) early warning of floor-shaking sensed by occupants; and (2) elevator control. Finally, we demonstrate the improvement in EEW alert accuracy that can be achieved using the proposed models.

Funder

Horizon 2020 Framework Programme

Mexican Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earthquake early warning in Central America: The societal perspective;International Journal of Disaster Risk Reduction;2023-10

2. Earthquake Forecasting Using Optimized Levenberg–Marquardt Back-Propagation Neural Network;2023 International Conference on Computing, Electronics & Communications Engineering (iCCECE);2023-08-14

3. Earthquake Forecasting Using Optimized Levenberg–marquardt Back-propagation Neural Network;WSEAS TRANSACTIONS ON COMPUTERS;2023-08-03

4. A review on seismic analysis of tall building (G+10);AIP Conference Proceedings;2023

5. Developing a risk-informed decision-support system for earthquake early warning at a critical seaport;Reliability Engineering & System Safety;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3