Abstract
Abstract
Despite their much smaller individual contribution to the global counts of casualties and damage than their larger counterparts, earthquakes with moment magnitudes Mw in the range 4.0–5.5 may dominate seismic hazard and risk in areas of low overall seismicity, a statement that is particularly true for regions where anthropogenically-induced earthquakes are predominant. With the risk posed by these earthquakes causing increasing alarm in certain areas of the globe, it is of interest to determine what proportion of earthquakes in this magnitude range that occur sufficiently close to population or the built environment do actually result in damage and/or casualties. For this purpose, a global catalogue of potentially damaging events—that is, earthquakes deemed as potentially capable of causing damage or casualties based on a series of pre-defined criteria—has been generated and contrasted against a database of reportedly damaging small-to-medium earthquakes compiled in parallel to this work. This paper discusses the criteria and methodology followed to define such a set of potentially damaging events, from the issues inherent to earthquake catalogue compilation to the definition of criteria to establish how much potential exposure is sufficient to consider each earthquake a threat. The resulting statistics show that, on average, around 2% of all potentially-damaging shocks were actually reported as damaging, though the proportion varies significantly in time as a consequence of the impact of accessibility to data on damage and seismicity in general. Inspection of the years believed to be more complete suggests that a value of around 4–5% might be a more realistic figure.
Publisher
Springer Science and Business Media LLC
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献