Exploring the impact of spatial correlations of earthquake ground motions in the catastrophe modelling process: a case study for Italy

Author:

Schiappapietra E.ORCID,Stripajová S.ORCID,Pažák P.,Douglas J.ORCID,Trendafiloski G.

Abstract

AbstractCatastrophe models are important tools to provide proper assessment and financial management of earthquake-related emergencies, which still create the largest protection gap across all perils. Earthquake catastrophe models include three main components, namely: (1) the earthquake hazard model, (2) the exposure model and, (3) the vulnerability model. Simulating spatially distributed ground-motion fields within either deterministic or probabilistic seismic hazard assessments poses a major challenge when site-related financial protection products are required. In this framework, we develop ad hoc correlation models for different Italian regions (specifically northern, central and southern Italy) and thereafter we perform both deterministic scenario-based and probabilistic event-based hazard and risk assessments in order to advance the understanding of spatial correlations within the catastrophe modelling process. We employ the OpenQuake engine for our calculations. This is an open-source tool suitable for accounting for the spatial correlation of earthquake ground-motion residuals. Our outcomes, albeit preliminary, demonstrate the importance of considering not only the spatial correlation of ground motions, but also its associated uncertainty in risk analyses. Although loss exceedance probability curves for the return periods of interest for the (re)insurance industry show similar trends, both hazard and risk footprints in terms of average annual losses feature less noisy and more realistic patterns if spatial correlation is taken into account. Such results will have implications for (re)insurance companies evaluating the risk to high-value civil engineering infrastructures.

Funder

University of Strathclyde

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3