Abstract
AbstractFor a regular language L, let $${{\,\mathrm{Var}\,}}(L)$$
Var
(
L
)
be the minimal number of nonterminals necessary to generate L by right linear grammars. Moreover, for natural numbers $$k_1,k_2,\ldots ,k_n$$
k
1
,
k
2
,
…
,
k
n
and an n-ary regularity preserving operation f, let $$g_f^{{{\,\mathrm{Var}\,}}}(k_1,k_2,\ldots ,k_n)$$
g
f
Var
(
k
1
,
k
2
,
…
,
k
n
)
be the set of all numbers k such that there are regular languages $$L_1,L_2,\ldots , L_n$$
L
1
,
L
2
,
…
,
L
n
such that $${{\,\mathrm{Var}\,}}(L_i)=k_i$$
Var
(
L
i
)
=
k
i
for $$1\le i\le n$$
1
≤
i
≤
n
and $${{\,\mathrm{Var}\,}}(f(L_1,L_2,\ldots , L_n))=k$$
Var
(
f
(
L
1
,
L
2
,
…
,
L
n
)
)
=
k
. We completely determine the sets $$g_f^{{{\,\mathrm{Var}\,}}}$$
g
f
Var
for the operations reversal, Kleene-closures $$+$$
+
and $$*$$
∗
, and union; and we give partial results for product and intersection.
Funder
Otto-von-Guericke-Universität Magdeburg
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Information Systems,Software
Reference16 articles.
1. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15, 71–89 (2010)
2. Dassow, J., Harbich, R.: Descriptional complexity of union and star on context-free languages. J. Autom. Lang. Comb. 17, 123–143 (2012)
3. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free languages. Fundamenta Informaticae 83, 35–49 (2008)
4. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 10, 407–437 (2005)
5. Gao, Y., Moreira, N., Reis, R., Yu, Sh: A survey on operational state complexity. J. Autom. Lang. Comb. 21, 251–310 (2016)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献