Abstract
AbstractThe manual implementation of local controllers for autonomous agents in a distributed and concurrent setting is an ambitious and error-prune task. Synthesis algorithms, however, allow for the automatic generation of such controllers given a formal specification of the system’s goal. Recently, high-level Petri games were introduced to allow for a concise modeling technique of distributed systems with a safety objective. One way of solving these games is by a translation to low-level Petri games and applying an existing solving algorithm. In this paper we present a new solving technique for a subclass of high-level Petri games with a single uncontrollable player, a bounded number of controllable players, and a local safety objective. The technique exploits symmetries in the high-level Petri game. We report on encouraging experimental results of a prototype implementation generating the reduced state space. The results for four existing and one new benchmark family show a state space reduction by up to three orders of magnitude.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献