Constrained polynomial zonotopes

Author:

Kochdumper NiklasORCID,Althoff MatthiasORCID

Abstract

AbstractWe introduce constrained polynomial zonotopes, a novel non-convex set representation that is closed under linear map, Minkowski sum, Cartesian product, convex hull, intersection, union, and quadratic as well as higher-order maps. We show that the computational complexity of the above-mentioned set operations for constrained polynomial zonotopes is at most polynomial in the representation size. The fact that constrained polynomial zonotopes are generalizations of zonotopes, polytopes, polynomial zonotopes, Taylor models, and ellipsoids further substantiates the relevance of this new set representation. In addition, the conversion from other set representations to constrained polynomial zonotopes is at most polynomial with respect to the dimension, and we present efficient methods for representation size reduction and for enclosing constrained polynomial zonotopes by simpler set representations.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Verification of Linear Temporal Logic Specifications Using Hybrid Zonotope-Based Reachability Analysis;2024 European Control Conference (ECC);2024-06-25

2. Set-Valued State Estimation for Nonlinear Systems Using Hybrid Zonotopes;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

3. Safety Critical Variable Analysis for Process Systems;Industrial & Engineering Chemistry Research;2023-12-06

4. Reachability Analysis for Linear Systems with Uncertain Parameters using Polynomial Zonotopes;Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control;2023-05-09

5. Automatic Abstraction Refinement in Neural Network Verification using Sensitivity Analysis;Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3