The longest letter-duplicated subsequence and related problems

Author:

Lai Wenfeng,Liyanage Adiesha,Zhu Binhai,Zou Peng

Abstract

AbstractMotivated by computing duplication patterns in sequences, a new problem called the longest letter-duplicated subsequence (LLDS) is proposed. Given a sequence S of length n, a letter-duplicated subsequence is a subsequence of S in the form of $$x_1^{d_1}x_2^{d_2}\ldots x_k^{d_k}$$ x 1 d 1 x 2 d 2 x k d k with $$x_i\in \Sigma $$ x i Σ , $$x_j\ne x_{j+1}$$ x j x j + 1 and $$d_i\ge 2$$ d i 2 for all i in [k] and j in $$[k-1]$$ [ k - 1 ] . A linear time algorithm for computing a longest letter-duplicated subsequence (LLDS) of S can be easily obtained. In this paper, we focus on two variants of this problem: (1) ‘all-appearance’ version, i.e., all letters in $$\Sigma $$ Σ must appear in the solution, and (2) the weighted version. For the former, we obtain dichotomous results: We prove that, when each letter appears in S at least 4 times, the problem and a relaxed version on feasibility testing (FT) are both NP-hard. The reduction is from $$(3^+,1,2^-)$$ ( 3 + , 1 , 2 - ) -SAT, where all 3-clauses (i.e., containing 3 lals) are monotone (i.e., containing only positive literals) and all 2-clauses contain only negative literals. We then show that when each letter appears in S at most 3 times, then the problem admits an O(n) time algorithm. Finally, we consider the weighted version, where the weight of a block $$x_i^{d_i} (d_i\ge 2)$$ x i d i ( d i 2 ) could be any positive function which might not grow with $$d_i$$ d i . We give a non-trivial $$O(n^2)$$ O ( n 2 ) time dynamic programming algorithm for this version, i.e., computing an LD-subsequence of S whose weight is maximized.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Asahiro, Y., Eto, H., Gong, M., Jansson, J., Lin, G., Miyano, E., Ono, H., Tanaka, S.: Approximation algorithms for the longest run subsequence problem. In: Bulteau, Liptá Z. (eds) 34th annual symposium on combinatorial pattern matching, CPM 2023, June 26–28, 2023, Marne-la-Vallée, France, volume 259 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 2(1–2), 12. (2023)

2. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet generated by copying systems. Inf. Process. Lett. 44(3), 119–123 (1992)

3. Cicalese, F., Pilati, N.: The tandem duplication distance problem is hard over bounded alphabets. In: Paola, F., Lucia M. (eds.) Combinatorial algorithms - 21st international workshop, IWOCA 2021, Ottawa, Canada, July 5–7, 2021, volume 12757 of Lecture notes in computer science, pp. 179–193. Springer (2021)

4. Ciriello, G., Miller, M.L., Aksoy, B.A., Senbabaoglu, Y., Schultz, N., Sander, C.: Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013)

5. Dassow, J., Mitrana, V., Paun, G.: On the regularity of the duplication closure. Bull. EATCS 69, 133–136 (1999)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3