Biomarkers in 5q-associated spinal muscular atrophy—a narrative review

Author:

Lapp H. S.,Freigang M.,Hagenacker T.,Weiler M.ORCID,Wurster C. D.,Günther RenéORCID

Abstract

Abstract5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in theSMN1gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs drivingSMNgene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.

Funder

Universitätsklinikum Carl Gustav Carus Dresden an der Technischen Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3