Different EEG brain activity in right and left handers during visually induced self-motion perception

Author:

McAssey MichaelaORCID,Dowsett James,Kirsch Valerie,Brandt Thomas,Dieterich Marianne

Abstract

AbstractVisually induced self-motion perception (vection) relies on visual–vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection–compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time–frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handedness-dependent vestibular dominance in the visual–vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection.

Funder

German Research Association (DFG) via the RTG 2175 ‘Perception in context and its Neural Basis’

Graduate School of Systemic Neurosciences

Deutsche Stiftung Neurologie

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3