SARS-CoV-2 infection and acute ischemic stroke in Lombardy, Italy

Author:

Pezzini AlessandroORCID,Grassi Mario,Silvestrelli Giorgio,Locatelli Martina,Rifino Nicola,Beretta Simone,Gamba Massimo,Raimondi Elisa,Giussani Giuditta,Carimati Federico,Sangalli Davide,Corato Manuel,Gerevini Simonetta,Masciocchi Stefano,Cortinovis Matteo,La Gioia Sara,Barbieri Francesca,Mazzoleni Valentina,Pezzini Debora,Bonacina Sonia,Pilotto Andrea,Benussi Alberto,Magoni Mauro,Premi Enrico,Prelle Alessandro Cesare,Agostoni Elio Clemente,Palluzzi Fernando,De Giuli Valeria,Magherini Anna,Roccatagliata Daria Valeria,Vinciguerra Luisa,Puglisi Valentina,Fusi Laura,Diamanti Susanna,Santangelo Francesco,Xhani Rubjona,Pozzi Federico,Grampa Giampiero,Versino Maurizio,Salmaggi Andrea,Marcheselli Simona,Cavallini Anna,Giossi Alessia,Censori Bruno,Ferrarese Carlo,Ciccone Alfonso,Sessa Maria,Padovani Alessandro,

Abstract

Abstract Objective To characterize patients with acute ischemic stroke related to SARS-CoV-2 infection and assess the classification performance of clinical and laboratory parameters in predicting in-hospital outcome of these patients. Methods In the setting of the STROKOVID study including patients with acute ischemic stroke consecutively admitted to the ten hub hospitals in Lombardy, Italy, between March 8 and April 30, 2020, we compared clinical features of patients with confirmed infection and non-infected patients by logistic regression models and survival analysis. Then, we trained and tested a random forest (RF) binary classifier for the prediction of in-hospital death among patients with COVID-19. Results Among 1013 patients, 160 (15.8%) had SARS-CoV-2 infection. Male sex (OR 1.53; 95% CI 1.06–2.27) and atrial fibrillation (OR 1.60; 95% CI 1.05–2.43) were independently associated with COVID-19 status. Patients with COVID-19 had increased stroke severity at admission [median NIHSS score, 9 (25th to75th percentile, 13) vs 6 (25th to75th percentile, 9)] and increased risk of in-hospital death (38.1% deaths vs 7.2%; HR 3.30; 95% CI 2.17–5.02). The RF model based on six clinical and laboratory parameters exhibited high cross-validated classification accuracy (0.86) and precision (0.87), good recall (0.72) and F1-score (0.79) in predicting in-hospital death. Conclusions Ischemic strokes in COVID-19 patients have distinctive risk factor profile and etiology, increased clinical severity and higher in-hospital mortality rate compared to non-COVID-19 patients. A simple model based on clinical and routine laboratory parameters may be useful in identifying ischemic stroke patients with SARS-CoV-2 infection who are unlikely to survive the acute phase.

Funder

Regione Lombardia

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3