Imaging-based outcome prediction in posterior circulation stroke

Author:

Kniep Helge C.,Elsayed Sarah,Nawabi Jawed,Broocks Gabriel,Meyer Lukas,Bechstein Matthias,Van Horn Noel,Psychogios Marios,Thomalla Götz,Flottmann Fabian,Kemmling André,Gellißen Susanne,Fiehler Jens,Sporns Peter B.,Hanning Uta

Abstract

Abstract Background and purpose We developed a machine learning model to allow early functional outcome prediction for patients presenting with posterior circulation (pc)-stroke based on CT-imaging and clinical data at admission. The proposed algorithm utilizes quantitative information from automated multidimensional assessments of posterior circulation Acute Stroke Prognosis Early CT-Score (pc-ASPECTS) regions. Discriminatory power was compared to predictions based on conventional pc-ASPECTS ratings. Methods We retrospectively analyzed non-contrast CTs and clinical data of 172 pc-stroke patients. 90 days outcome was dichotomized into good and poor using modified Rankin Scale (mRS) cut-offs. Predictive performance was assessed for outcome differentiation at mRS 2, 3, 4 and survival prediction (mRS ≤ 5) using random forest algorithms. Results were compared to conventional pc-ASPECTS and clinical parameters. Models were evaluated in a nested fivefold cross-validation approach. Results Receiver operating characteristic areas under the curves (ROC-AUCs) of the test sets using conventionally rated pc-ASPECTS reached 0.63 for mRS ≤ 4 to 0.68 for mRS ≤ 5 and 0.73 for mRS ≤ 5 to 0.85 for mRS ≤ 2 if clinical data were considered. Pure imaging-based machine learning classifier ROC-AUCs were lowest for mRS ≤ 4 (0.81) and highest for mRS ≤ 5 (0.87). The combined clinical data and machine learning-based model had the highest predictive performance with ROC-AUCs reaching 0.90 for mRS ≤ 2. Conclusion Machine learning-based evaluation of pc-ASPECTS regions predicts functional outcome of pc-stroke patients with higher accuracy than conventional assessments. This could optimize triage for additional diagnostics and allocation of best possible medical care and might allow required arrangements of the social environment at an early point of time.

Funder

Universitätsklinikum Hamburg-Eppendorf (UKE)

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3