Evaluation of a multimodal diagnostic algorithm for prediction of cognitive impairment in elderly patients with dizziness

Author:

Felfela K.,Jooshani N.,Möhwald K.,Huppert D.,Becker-Bense S.,Schöberl F.,Schniepp R.,Filippopulos F.,Dieterich M.,Wuehr M.,Zwergal A.ORCID

Abstract

Abstract Background The current diagnostic workup for chronic dizziness in elderly patients often neglects neuropsychological assessment, thus missing a relevant proportion of patients, who perceive dizziness as a subjective chief complaint of a concomitant cognitive impairment. This study aimed to establish risk prediction models for cognitive impairment in chronic dizzy patients based on data sources routinely collected in a dizziness center. Methods One hundred patients (age: 74.7 $$\pm$$ ± 7.1 years, 41.0% women) with chronic dizziness were prospectively characterized by (1) neuro-otological testing, (2) quantitative gait assessment, (3) graduation of focal brain atrophy and white matter lesion load, and (4) cognitive screening (MoCA). A linear regression model was trained to predict patients’ total MoCA score based on 16 clinical features derived from demographics, vestibular testing, gait analysis, and imaging scales. Additionally, we trained a binary logistic regression model on the same data sources to identify those patients with a cognitive impairment (i.e., MoCA < 25). Results The linear regression model explained almost half of the variance of patients’ total MoCA score (R2 = 0.49; mean absolute error: 1.7). The most important risk-predictors of cognitive impairment were age (β = − 0.75), pathological Romberg’s sign (β = − 1.05), normal caloric test results (β = − 0.8), slower timed-up-and-go test (β = − 0.67), frontal (β = − 0.6) and temporal (β = − 0.54) brain atrophy. The binary classification yielded an area under the curve of 0.84 (95% CI 0.70–0.98) in distinguishing between cognitively normal and impaired patients. Conclusions The need for cognitive testing in patients with chronic dizziness can be efficiently approximated by available data sources from routine diagnostic workup in a dizziness center.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Stiftung Neurologie

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3