Homeostatic plasticity of eye movement performance in Xenopus tadpoles following prolonged visual image motion stimulation

Author:

Forsthofer Michael,Straka HansORCID

Abstract

AbstractVisual image motion-driven ocular motor behaviors such as the optokinetic reflex (OKR) provide sensory feedback for optimizing gaze stability during head/body motion. The performance of this visuo-motor reflex is subject to plastic alterations depending on requirements imposed by specific eco-physiological or developmental circumstances. While visuo-motor plasticity can be experimentally induced by various combinations of motion-related stimuli, the extent to which such evoked behavioral alterations contribute to the behavioral demands of an environment remains often obscure. Here, we used isolated preparations of Xenopus laevis tadpoles to assess the extent and ontogenetic dependency of visuo-motor plasticity during prolonged visual image motion. While a reliable attenuation of large OKR amplitudes can be induced already in young larvae, a robust response magnitude-dependent bidirectional plasticity is present only at older developmental stages. The possibility of older larvae to faithfully enhance small OKR amplitudes coincides with the developmental maturation of inferior olivary–Purkinje cell signal integration. This conclusion was supported by the loss of behavioral plasticity following transection of the climbing fiber pathway and by the immunohistochemical demonstration of a considerable volumetric extension of the Purkinje cell dendritic area between the two tested stages. The bidirectional behavioral alterations with different developmental onsets might functionally serve to standardize the motor output, comparable to the known differential adaptability of vestibulo-ocular reflexes in these animals. This homeostatic plasticity potentially equilibrates the working range of ocular motor behaviors during altered visuo-vestibular conditions or prolonged head/body motion to fine-tune resultant eye movements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3