Retinal inner nuclear layer thinning is decreased and associates with the clinical outcome in ocrelizumab-treated primary progressive multiple sclerosis

Author:

Miscioscia AlessandroORCID,Puthenparampil Marco,Miante Silvia,Pengo Marta,Rinaldi Francesca,Perini Paola,Gallo Paolo

Abstract

Abstract Background Ocrelizumab was found to decrease brain atrophy rate in primary progressive multiple sclerosis (PPMS), but no data are currently available on the effect of ocrelizumab on retinal layer thicknesses in the PPMS population. Objective To assess retinal layer changes in ocrelizumab-treated PPMS and test their possible application as biomarkers of therapy response. Methods 36 PPMS patients, treated with ocrelizumab for at least 6 months, and 39 sex- and age-matched healthy controls (HC) were included in a blind, longitudinal study. Spectrum-domain optical coherence tomography (SD-OCT) was performed at study entry (T0) and after 6 (T6) and 12 months (T12). At month 24 (T24), patients were divided into responders (no evidence of 1-year confirmed disability progression, 1y-CDP) and non-responders (evidence of 1y-CDP). Results At T24, 23/36 (64%) patients were considered responders and 13/36 (36%) non-responders. At T0, peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell–inner plexiform layer (GCIPL) and inner retinal layer (IRL) volume were significantly lower in PPMS compared to HC (p = 0.001 for all comparisons). At T6 and T12, non-responders significantly differed in the inner nuclear layer (INL) thinning rate compared to responders (p = 0.005 at both time-points). Conclusions Ocrelizumab significantly slows down INL thinning rate in PPMS responders. The longitudinal analysis of retina layer changes by means of OCT may be a promising prognostic test, and merits further investigations.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3