Abstract
AbstractA novel numerical approximation technique for the Wigner transport equation including the spatial variation of the effective mass based on the formulation of an exponential operator within the phase space is derived. In addition, a different perspective for the discretization of the phase space is provided, which finally allows flexible discretization patterns. The formalism is presented by means of a simply structured resonant tunneling diode in the stationary and transient regime utilizing a conduction band Hamilton operator. In order to account for quantum effects within heterostructure devices adequately, the corresponding spatial variation of the effective mass is considered explicitly, which is mostly disregarded in conventional methods. The results are validated by a comparison with the results obtained from the nonequilibrium Green’s function approach within the stationary regime assuming the flatband case. Additionally, the proposed approach is utilized to perform a transient analysis of the resonant tunneling diode including the self-consistent Hartree–Fock potential.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Modeling and Simulation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献