Mathematical modeling, parameter identification, and electrical performance of a DSSC based on nature-inspired optimization techniques

Author:

Atia Doaa M.ORCID,Ahmed Ninet M.

Abstract

AbstractThe aim of this research is to achieve the highest efficiency for a dye-sensitized solar cell (DSSC) before the fabrication process. For DSSC efficiency improvement, six different optimization algorithms are used for the DSSC parameter extraction. The algorithms used are the genetic algorithm, grey wolf algorithm, dragonfly algorithm, moth flame algorithm, ant-lion algorithm, and whale algorithm, developed based on MATLAB coding. The physical parameters for the DSSC are the electron lifetime, electrode thickness, ideality factor, absorption coefficient, and diffusion coefficient. A comparative study is carried out among the six algorithms based on the highest efficiency and computational speed. Finally, a sensitivity analysis of environmental conditions (solar irradiance and temperature) and physical parameters is implemented and analyzed to simulate the DSSC performance for different values of these parameters. The DSSC parameters studied are short-circuit current density, open-circuit voltage, fill factor, and efficiency. The optimal electron lifetime is 100 ms, and the optimal thickness of the photoanode layer is 1 μm, reaching maximum efficiency equal to 11.79%.

Funder

Electronics Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Modeling and Simulation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Jiang, R., Michaels, H., Vlachopoulos, N., Freitag, M.: Beyond the limitations of dye-sensitized solar cells. In Dye-Sensitized Solar Cells, pp. 285–323. Academic Press, (2019). https://doi.org/10.1016/B978-0-12-814541-8.00008-2

2. Spall J.: Introduction to stochastic search and optimization: estimation, simulation, and control, 65, John Wiley & Sons; (2005).

3. Back, T.: Evolutionary algorithms in theory and practice. Oxford Univ, Press (1996)

4. Hoos H., Stützle T.: Stochastic local search: foundations & applications. Elsevier; (2004).

5. Khan M.: A study on the optimization of dye-sensitized solar cells, Master of science in electrical engineering, department of electrical engineering, college of engineering, University of South Florida, (2013).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3