The Functional and Allometric Implications of Hipbone Trabecular Microarchitecture in a Sample of Eutherian and Metatherian Mammals

Author:

Webb Nicole M.ORCID

Abstract

AbstractThe pelvis plays an active role in weight bearing and countering the ground reaction forces incurred by the hindlimbs thus making it a critical component of the locomotor skeleton. Accordingly, this anatomical region is theoretically ideal for inferring locomotor behavior from both external skeletal morphology and trabecular microarchitecture, with the latter possibly offering nuanced insights into the mechanical loading environment given its increased plasticity and higher turnover rate. However, trabecular microarchitecture is also known to be influenced by a variety of factors including body size, sex, age, genetic regulation, diet and activity level, that collectively hinder the ability to generate consistent functional inferences. In this study, a comparative sample of mammals (42 species spanning four orders) of varying sizes, yet comparable locomotor repertoires, were evaluated to determine the effects of body size, phylogeny and locomotion on hipbone trabecular microarchitecture. This study found a weak functional signal detected in differences in bone volume fraction and the degree of anisotropy across certain pre-assigned locomotor categories, while confirming previously recognized allometric scaling trends reported for other mammalian samples based on the femur. Within primates, a more anisotropic pattern was observed for quadrupedal species attributed to their repetitive loading regimes and stereotypical limb excursions, while isotropic values were revealed for taxa utilizing more varied arboreal repertoires. Humans, despite a frequent and predictable loading environment associated with their use of bipedalism, showed relatively isotropic values. This study highlights the confounding factors that influence trabecular microarchitecture and consequently limit its utility as a method for investigating locomotor adaptation.

Funder

National Science Foundation’s Integrative Graduate Education and Research Traineeship Grant

National Science Foundation Grant

Universität Zürich

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3