Abstract
AbstractThe environmental transformations associated with cities are expected to affect organisms at the demographic, phenotypic, and evolutionary level, often negatively. The prompt detection of stressed populations before their viability is compromised is essential to understand species’ responses to novel conditions and to integrate urbanization with biodiversity preservation. The presumably stressful conditions of urban environments are expected to affect organisms’ developmental pathways, resulting in a reduction of the efficacy of developmental stability and canalization processes, which can be observed as increased Fluctuating Asymmetry (FA) and Phenotypic Variance (PV), respectively. Here, we investigated whether patterns of phenotypic variation of urban populations of a fully terrestrial salamander, Salamandra salamandra bernardezi, are affected by urban settings compared to surrounding native forest populations. We sampled populations within and around the city of Oviedo (northern Spain) and used geometric morphometrics to compare morphological differentiation, head shape deviance from the allometric slope, PV, and FA. We also compared morphological patterns with neutral genetic and structure patterns. We observed increased levels of differentiation among urban populations and in PV within certain of them, yet no differences in allometric deviance and FA were detected between habitats, and no morphological measures were found to be correlated with genetic traits. Our results do not support a clear negative impact of urban conditions over salamander populations, but rather suggest that other ecological and evolutionary local processes influence morphological variation in this urban system.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献