Abstract
AbstractWe introduce a new type of mappings in metric spaces which are
three-point analogue of the well-known Chatterjea type mappings, and call them
generalized Chatterjea type mappings. It is shown that such mappings can be
discontinuous as is the case of Chatterjea type mappings and this new class includes
the class of Chatterjea type mappings. The fixed point theorem for generalized
Chatterjea type mappings is proven.
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales, Fund. Math., 3 (1922), 133-181.
2. V. Berinde and M. Păcurar, Approximating fixed points of enriched Chatterjea con-
tractions by Krasnoselskij iterative algorithm in Banach spaces, J. Fixed Point
Theory Appl. 23 (2021), Paper No. 66, 16 pp.
3. R. Bisht and E. Petrov, A three point extension of Chatterjea’s fixed point theorem
with at most two fixed points, arXiv:2403.07906 (2024).
4. S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727–730.
5. N. Van Dung and A. Petru¸sel, On iterated function systems consisting of Kannan
maps, Reich maps, Chatterjea type maps, and related results,J. Fixed Point
Theory Appl., 19 (2017), 2271–2285.