Author:
Balister P.,Bollobás B.,Morris R.,Sahasrabudhe J.,Tiba M.
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. R. B. Crittenden and C. L. Vanden Eynden, A proof of a conjecture of Erdős, Bull. Amer. Math. Soc., 75 (1969), 1326–1329
2. R. B. Crittenden and C. L. Vanden Eynden, Any $$n$$ arithmetic progressions covering the first $$2^n$$ integers cover all integers, Proc. Amer. Math. Soc., 24 (1970), 475–481
3. Erdős, P.: On integers of the form $$2^k + p$$ and some related problems. Summa Brasil. Math. 2, 113–123 (1950)
4. P. Erdős, Remarks on number theory. IV. Extremal problems in number theory. I, Mat. Lapok, 13 (1962), 228–255 (in Hungarian)
5. P. Erdős, Extremal problems in number theory, in: Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc. (Providence, RI, 1965), pp. 181–189
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献