Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. C. Bauer and Y. H. Wang, The binary Goldbach conjecture with primes in arithmetic progressions with large modulus, Acta Arith., 159 (2013), 227–243.
2. C. Bauer, Goldbach’s conjecture in arithmetic progressions: number and size of exceptional prime moduli, Arch. Math. 108 (2017), 159–172.
3. G. Bhowmik and K. Halupczok, Asymptotics of Goldbach representations, in: Various Aspects of Multiple Zeta Functions, in honor of Professor Kohji Matsumoto’s 60th birthday, Adv. Studies in Pure Math., Math. Society of Japan (2020), pp. 1–21.
4. G. Bhowmik, K. Halupczok, K. Matsumoto and Y. Suzuki, Goldbach representations in arithmetic progressions and zeros of Dirichlet L-functions, Mathematika, 65 (2019), 57-097.
5. J. Brüdern and R. C. Vaughan, A Montgomery–Hooley theorem for sums of two cubes, European J. Math. (2021), doi.org/10.1007/s40879-021-00495-4.