Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. N. Adžaga, On the size of Diophantine $$m$$-tuples in imaginary quadratic number rings, Bull. Math. Sci., 9 (2019) 1950020, 10 pp
2. Bonciocat, N.C., Cipu, M., Mignotte, M.: On $$D(-1)$$-quadruples. Publ. Mat. 56, 279–304 (2012)
3. N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine $$D(-1)$$-quadruple, arXiv:2010.09200
4. A. Baker and H. Davenport, The equations $$3x^{2} -2 = y^{2}$$ and $$8x^{2} -7 = z^{2}$$, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129-137
5. Bennett, M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Introduction;Developments in Mathematics;2024
2. On the length of D(±1)$D(\pm 1)$‐tuples in imaginary quadratic rings;Bulletin of the London Mathematical Society;2023-09-27
3. On the number of Diophantine m-tuples in finite fields;Finite Fields and Their Applications;2023-09
4. Diophantine Triples with the Property D(n) for Distinct n’s;Mediterranean Journal of Mathematics;2022-12-11