No selection lemma for empty triangles

Author:

Fabila-Monroy R.,Hidalgo-Toscano C.,Perz D.,Vogtenhuber B.

Abstract

Abstract Let P be a set of n points in general position in the plane. The Second Selection Lemma states that for any family of $$\Theta(n^3)$$ Θ ( n 3 ) triangles spanned by P, there exists a point of the plane that lies in a constant fraction of them. For families of $$\Theta(n^{3-\alpha})$$ Θ ( n 3 - α ) triangles, with $$0\le \alpha \le 1$$ 0 α 1 , there might not be a point in more than $$\Theta(n^{3-2\alpha})$$ Θ ( n 3 - 2 α ) of those triangles. An empty triangle of P is a triangle spanned by P not containing any point of P in its interior. Bárány conjectured that there exists an edge spanned by P that is incident to a super-constant number of empty triangles of P. The number of empty triangles of P might be as low as $$\Theta(n^2)$$ Θ ( n 2 ) ; in such a case, on average, every edge spanned by P is incident to a constant number of empty triangles. The conjecture of Bárány suggests that for the class of empty triangles the above upper bound might not hold. In this paper we show that, somewhat surprisingly, the above upper bound does in fact hold for empty triangles. Specifically, we show that for any integer n and real number $$0\leq \alpha \leq 1$$ 0 α 1 there exists a point set of size n with $$\Theta(n^{3-\alpha})$$ Θ ( n 3 - α ) empty triangles such that any point of the plane is only in $$O(n^{3-2\alpha})$$ O ( n 3 - 2 α ) empty triangles.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3