Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. E. Bombieri, Density theorems for the zeta function, in: Proceedings of the Stony
Brook Number Theory Conference, AMS (Providence, RI, 1969), pp. 352–358,
2. J. Bourgain, C. Demeter and L. Guth, Proof of the main conjecture in Vinogradov’s
mean value theorem for degrees higher than three, Ann. of Math. (2), 184
(2016), 633–682.
3. F. Carlson, Über die Nullstellen der Dirichletschen Reihen und der Riemannschen
$$\zeta$$-Funktion, Arkiv Math. Astr. Fys., 15 (1920), No. 20.
4. K. Ford, Vinogradov’s integral and bounds for the Riemann zeta function, Proc. London
Math. Soc. (3), 85 (2002), 565–633.
5. S. M. Gonek, S. W. Graham and Y. Lee, The Lindelöf hypothesis for primes is equivalent
to the Riemann Hypothesis, Proc. Amer. Math. Soc., 148 (2020), 2863–2875.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献