Drivers and resilience of methane-derived carbon contribution to chironomid biomass in boreal lakes

Author:

Belle Simon,Otsing Eveli,Tammert Helen,Kisand Veljo

Abstract

AbstractGeneral mechanisms underlying the pathways of methane (CH4)-derived carbon in aquatic food webs are often associated with eutrophication-driven anoxia. Yet, the influence of changing nutrient availability on CH4 cycling has been mainly investigated during the increasing phase (i.e. onset of anthropogenic eutrophication), thus leaving unclear whether nutrient reduction can lead to a simple reversion of the observed effects on CH4 cycling. We combined stable isotopes of chironomid remains (δ13CHC) and sedimentary ancient DNA of methanotrophic bacteria (MOB) to unravel the drivers of biogenic CH4 contribution to chironomid biomass in boreal lakes. Using a spatial dataset, our study shows that δ13CHC values were more depleted in hypoxic lakes and were positively associated with methanotrophic bacteria belonging to the γ-proteobacteria class (MOB type I), therefore supporting the view of higher utilization of CH4-derived carbon in anoxic environments. However, this space-for-time substitution approach failed to provide any reliable information on whether lake food webs follow the same pathway in forward and reverse directions. Using downcore reconstruction, our results show that despite a drastic mitigation-induced decrease in nutrient concentrations and strong evidence of biological recovery of algal and chironomid communities, chironomid biomass remained highly subsidized by methanotrophic bacteria throughout the study period. Results therefore suggest that mechanisms underlying the pathways of CH4-derived carbon in aquatic food webs are likely not the same during perturbation and recovery trajectories and that complex feedback mechanisms can stabilize lakes in this CH4-based food web state.

Funder

Naturvårdsverket

University of Tartu

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3