Atmospheric CO2 availability induces varying responses in net photosynthesis, toxin production and N2 fixation rates in heterocystous filamentous Cyanobacteria (Nostoc and Nodularia)

Author:

Wannicke NicolaORCID,Herrmann AchimORCID,Gehringer Michelle M.ORCID

Abstract

AbstractHeterocystous Cyanobacteria of the genus Nodularia form major blooms in brackish waters, while terrestrial Nostoc species occur worldwide, often associated in biological soil crusts. Both genera, by virtue of their ability to fix N2 and conduct oxygenic photosynthesis, contribute significantly to global primary productivity. Select Nostoc and Nodularia species produce the hepatotoxin nodularin and whether its production will change under climate change conditions needs to be assessed. In light of this, the effects of elevated atmospheric CO2 availability on growth, carbon and N2 fixation as well as nodularin production were investigated in toxin and non-toxin producing species of both genera. Results highlighted the following: Biomass and volume specific biological nitrogen fixation (BNF) rates were respectively almost six and 17 fold higher in the aquatic Nodularia species compared to the terrestrial Nostoc species tested, under elevated CO2 conditions. There was a direct correlation between elevated CO2 and decreased dry weight specific cellular nodularin content in a diazotrophically grown terrestrial Nostoc species, and the aquatic Nodularia species, regardless of nitrogen availability. Elevated atmospheric CO2 levels were correlated to a reduction in biomass specific BNF rates in non-toxic Nodularia species. Nodularin producers exhibited stronger stimulation of net photosynthesis rates (NP) and growth (more positive Cohen’s d) and less stimulation of dark respiration and BNF per volume compared to non-nodularin producers under elevated CO2 levels. This study is the first to provide information on NP and nodularin production under elevated atmospheric CO2 levels for Nodularia and Nostoc species under nitrogen replete and diazotrophic conditions.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Technische Universität Kaiserslautern

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3