Landscape regulation of microbial use of terrestrial carbon in boreal streams

Author:

Bastias ElliotORCID,Jonsson MicaelORCID

Abstract

AbstractMicrobes decomposing leaf litter in aquatic ecosystems are exposed to two major sources of carbon (C), namely, particulate organic C (POC) and dissolved organic C (DOC). The use of DOC relative to POC during litter decomposition likely depends on the availability of DOC, which in turn is regulated by the characteristics of the surrounding landscape, although this extrinsic indirect control of DOC use remains largely unexplored. We have investigated how variations in stream physical and chemical characteristics, distribution of major landscape elements (i.e., forest, mires, and lakes), and riparian vegetation community composition (i.e., relative cover of deciduous vs. coniferous tree species) influence DOC use by leaf-associated microbes (LAM). Specifically, in a boreal stream network of ten first- to third-order streams, we related in-stream characteristics, landscape elements, and riparian vegetation community composition to DOC/POC respiration ratios (i.e., the amount of CO2 produced by LAM respiration of DOC + POC divided by the amount of leaf C mass lost through decomposition). The results showed that DOC/POC respiration ratios were > 1 in most of the study sites, indicating that LAM use a substantial amount of DOC during leaf litter decomposition. This microbial reliance on DOC varied with in-stream DOC and nutrient concentrations, proportional mire and forest cover, and riparian vegetation community composition. In particular, high mire and coniferous cover increased DOC use by LAM. As such, landscape configuration and how it is modified by land use and climate change must be considered in order to understand microbial turnover of terrestrial C in boreal streams.

Funder

Carl Tryggers Stiftelse

Umea University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3