Stoichiometric characteristics and homeostasis of leaf nitrogen and phosphorus responding to different water surface elevations in hydro-fluctuation zone of the Three Gorges Reservoir

Author:

Wang Heyun,Sun Tong,Liu Ying,Liu Wei,Xiao Henglin

Abstract

AbstractAs a type of wetland ecosystem with off-season 30 m water level fluctuation, the huge changes in the ecological environment, plant species, and vegetation dynamics in the hydro-fluctuation zone of the Three Gorges Reservoir (TGR) area have attracted a wide range of attention. In this present study, six typical locations in the water level fluctuating zone were used as the research objects, and the effects of different water surface elevations on the stoichiometric characteristics and homeostasis of leaf nitrogen and phosphorus were studied through a sample survey method. Results revealed that leaf nitrogen content was linearly correlated with leaf phosphorus content along water surface elevation. And water surface elevation significantly affected the nitrogen and phosphorus content of dominant plants. Four dominant species [Cynodon dactylon (Linn.) Pers, Xanthium sibiricum Partin ex Wider, Abutilon theophrasti Medik, and Bidens pilosa Linn] exhibited specific differences in the phosphorus steady state index (Hp) and nitrogen steady state index (HN). Although belonging to different categories, both HP and HN of four dominant species were in the same order: X. sibiricum > A. theophrasti > C. dactylon > B. Pilosa. The interspecific differences in HN and HP indicated that there were differences in the characteristics of nutrient utilization of dominant species and their adaption to water surface elevation. Furthermore, as the elevation increases, the community coverage increased and the community stability index also increased. This might indicate that in the fluctuating zone habitat, the plant’s nitrogen and phosphorus utilization strategy affects the distribution and composition of plant community along water surface elevation, and ultimately affects the stoichiometric homeostasis on the community levels.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3