Generation of human gastric assembloids from primary fetal organoids

Author:

Benedetti Giada,Jones Brendan C.,Sgualdino Francesca,De Coppi Paolo,Giobbe Giovanni Giuseppe

Abstract

Abstract Purpose Understanding human gastric epithelium homeostasis remains partial, motivating the exploration of innovative in vitro models. Recent literature showcases the potential of fetal stem cell-derived organoids in developmental and disease modelling and translational therapies. To scale the complexity of the model, we propose to generate assembloids, aiming to increase gastric maturation to provide new structural and functional insights. Methods Human fetal gastric organoids (fGOs) were expanded in 3D Matrigel cultures. Confluent organoid cultures were released from the Matrigel dome and resuspended in a collagen I hydrogel. Subsequently, the organoid mixture was seeded in a ring shape within a 24-well plate and allowed to gelate. The structure was lifted in the medium and cultured in floating conditions, allowing for organoid self-assembling into a gastric assembloid. After 10 days of maturation, the assembloids were characterized by immunostaining and RT-PCR, comparing different fetal developmental stages. Results Successful generation of human fetal gastric assembloids (fGAs) was achieved using spontaneous self-aggregation within the collagen I hydrogel. Immunostaining analysis of early and late fGAs showed the establishment of apico-basal cell polarity, secretion of gastric mucins, and the presence of chromogranin A in both samples. Transcriptional markers analysis revealed distinct disparities in markers associated with mature cell types between late and early fetal stages. Conclusions fGOs can reliably be generated from human fetal samples. This pioneering assembloid approach paves the way for advancing our comprehension of human gastric epithelium homeostasis and its perturbation, offering a better in vitro platform for the study of gastric epithelial development and therapeutic translation.

Funder

Oak Foundation

General Sir John Monash Foundation

NIHR Great Ormond Street Hospital Biomedical Research Centre

Great Ormond Street Hospital Charity

LifeArc

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Surgery,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3