Abstract
AbstractTeleoperation systems allow the extension of human capabilities to remote-control devices by providing the operator with conditions similar to those at the remote site through a communication channel that sends information from one site to the other. This article aims to present an analysis of the benefits of force feedback applied to the bilateral teleoperation of a humanoid robot with time-varying delay. As a control scheme, we link adaptive inverse dynamics compensation, balance control, and P+d like controllers. Finally, a test is performed where an operator simultaneously handles the locomotion (forward velocity and turn angle) and arm of a simulated 3D humanoid robot to do a pick-and-place task using two master devices with force feedback, where indexes such as time to complete the task, coordination errors, path tracking error, and percentage of successful tests are reported for different time-delays. We conclude with the results achieved.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Modelling and Simulation,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献