Abstract
AbstractVarious few-shot image classification methods indicate that transferring knowledge from other sources can improve the accuracy of the classification. However, most of these methods work with one single source or use only closely correlated knowledge sources. In this paper, we propose a novel weakly correlated knowledge integration (WCKI) framework to address these issues. More specifically, we propose a unified knowledge graph (UKG) to integrate knowledge transferred from different sources (i.e., visual domain and textual domain). Moreover, a graph attention module is proposed to sample the subgraph from the UKG with low complexity. To avoid explicitly aligning the visual features to the potentially biased and weakly correlated knowledge space, we sample a task-specific subgraph from UKG and append it as latent variables. Our framework demonstrates significant improvements on multiple few-shot image classification datasets.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献