Knowledge Mining: A Cross-disciplinary Survey

Author:

Rui Yong,Carmona Vicente Ivan Sanchez,Pourvali MohsenORCID,Xing Yun,Yi Wei-Wen,Ruan Hui-Bin,Zhang Yu

Abstract

AbstractKnowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured representation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields. In this work, we present such a survey.

Publisher

Springer Science and Business Media LLC

Reference142 articles.

1. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From data mining to knowledge discovery in databases. AI Magazine, vol. 17, no. 3, pp. 37–54, 1996. DOI: https://doi.org/10.1609/aimag.v17i3.1230.

2. S. Riedel, L. M. Yao, A. McCallum, B. M. Marlin. Relation extraction with matrix factorization and universal schemas. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, Atlanta, USA, pp. 74–84, 2013.

3. A. S. d’Avila Garcez, K. Broda, D. M. Gabbay. Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence, vol. 125, no. 1–2, pp. 155–207, 2001. DOI: https://doi.org/10.1016/S0004-3702(00)00077-1.

4. S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach, 3rd ed., Harlow, USA: Pearson Education, 2010.

5. D. Jurafsky, J. H. Martin. Speech and Language Processing, [Online], Available: https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf, 2021.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3