Deep Learning Based Single Image Super-resolution: A Survey
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11633-019-1183-x.pdf
Reference54 articles.
1. D. Glasner, S. Bagon, M. Irani. Super-resolution from a single image. In Proceedings of the 12th International Conference on Computer Vision, IEEE, Kyoto, Japan, pp. 349–356, 2009. DOI: https://doi.org/10.1109/ICCV.2009.5459271 .
2. J. B. Huang, A. Singh, N. Ahuja. Single image super-resolution from transformed self-exemplars. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 5197–5206, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7299156 .
3. W. T. Freeman, E. C. Pasztor, O. T. Carmichael. Learning low-level vision. International Journal of Computer Vision, vol. 40, no. 1, pp. 25–47, 2000. DOI: https://doi.org/10.1023/A:1026501619075 .
4. W. T. Freeman, T. R. Jones, E. C. Pasztor. Example-based super-resolution. IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 56–65, 2002. DOI: https://doi.org/10.1109/38.988747 .
5. H. Chang, D. Y. Yeung, Y. M. Xiong. Super-resolution through neighbor embedding. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004. DOI: https://doi.org/10.1109/CVPR.2004.1315043 .
Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Effective Res-Progressive Growing Generative Adversarial Network-Based Cross-Platform Super-Resolution Reconstruction Method for Drone and Satellite Images;Drones;2024-09-01
2. Fully 1 × 1 Convolutional Network for Lightweight Image Super-resolution;Machine Intelligence Research;2024-08-20
3. Improved high-resolution network for palmprint principal line extraction;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05
4. Super-resolution reconstruction of background-oriented Schlieren displacement field based on the convolution neural network with the gradient loss function;Measurement Science and Technology;2024-07-02
5. Minimizing the Limitations in Improving Historical Aerial Photographs with Super-Resolution Technique;Applied Sciences;2024-02-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3