Wear state recognition of drills based on K-means cluster and radial basis function neural network
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11633-010-0502-z.pdf
Reference21 articles.
1. Y. J. Choi, M. S. Park, C. N. Chu. Prediction of drill failure using features extraction in time and frequency domains of feed motor current. International Journal of Machine Tools and Manufacture, vol. 48, no. 1, pp. 29–39, 2008.
2. B. Sick. On-line and indirect tool wear monitoring in turning with artificial networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, vol. 16, no. 4, pp. 487–546, 2002.
3. A. Noori-Khajavi, R. Komanduri. Frequency and time domain analyses of sensor signals in drilling, Part 1: Correlation with drill wear. International Journal of Machine Tools and Manufacture, vol. 35, no. 6, pp. 775–793, 1995.
4. A. L. Quadro, J. R. T. Branco. Analysis of the acoustic emission during drilling test. Surface and Coating Technology, vol. 94–95, no. 1–3, pp. 691–695, 1997.
5. Y. T. Oh, W. T. Kwon, C. N. Chu. Drilling torque control using spindle motor current and its effect on tool wear. International Journal of Advanced Manufacturing Technology, vol. 24, no. 5–6, pp. 327–334, 2004.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Clustering Algorithm with Initial Centroids in Tool Wear Region Recognition;International Journal of Precision Engineering and Manufacturing;2021-03-29
2. Multi-layer radial basis function neural network based on multi-scale kernel learning;Applied Soft Computing;2019-09
3. Dynamic Bayesian Network-Based Approach by Integrating Sensor Deployment for Machining Process Monitoring;IEEE Access;2018
4. Novel texture-based descriptors for tool wear condition monitoring;Mechanical Systems and Signal Processing;2018-01
5. A State Recognition Approach for Complex Equipment Based on a Fuzzy Probabilistic Neural Network;Algorithms;2016-05-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3