Video Polyp Segmentation: A Deep Learning Perspective

Author:

Ji Ge-PengORCID,Xiao GuobaoORCID,Chou Yu-ChengORCID,Fan Deng-PingORCID,Zhao KaiORCID,Chen GengORCID,Van Gool LucORCID

Abstract

AbstractWe present the first comprehensive video polyp segmentation (VPS) study in the deep learning era. Over the years, developments in VPS are not moving forward with ease due to the lack of a large-scale dataset with fine-grained segmentation annotations. To address this issue, we first introduce a high-quality frame-by-frame annotated VPS dataset, named SUN-SEG, which contains 158 690 colonoscopy video frames from the well-known SUN-database. We provide additional annotation covering diverse types, i.e., attribute, object mask, boundary, scribble, and polygon. Second, we design a simple but efficient baseline, named PNS+, which consists of a global encoder, a local encoder, and normalized self-attention (NS) blocks. The global and local encoders receive an anchor frame and multiple successive frames to extract long-term and short-term spatial-temporal representations, which are then progressively refined by two NS blocks. Extensive experiments show that PNS+ achieves the best performance and real-time inference speed (170 fps), making it a promising solution for the VPS task. Third, we extensively evaluate 13 representative polyp/object segmentation models on our SUN-SEG dataset and provide attribute-based comparisons. Finally, we discuss several open issues and suggest possible research directions for the VPS community. Our project and dataset are publicly available at https://github.com/GewelsJI/VPS.

Publisher

Springer Science and Business Media LLC

Reference85 articles.

1. J. Bernal, J. Sánchez, F. Vilariño. Towards automatic polyp detection with a polyp appearance model. Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012. DOI: https://doi.org/10.1016/j.patcog.2012.03.002.

2. J. G. B. Puyal, K. K. Bhatia, P. Brandao, O. F. Ahmad, D. Toth, R. Kader, L. Lovat, P. Mountney, D. Stoyanov. Endoscopic polyp segmentation using a hybrid 2D/3D CNN. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Lima, Peru, pp. 295–305, 2020. DOI: https://doi.org/10.1007/978-3-030-59725-2_29.

3. M. Misawa, S. E. Kudo, Y. Mori, K. Hotta, K. Ohtsuka, T. Matsuda, S. Saito, T. Kudo, T. Baba, F. Ishida, H. Itoh, M. Oda, K. Mori. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointestinal Endoscopy, vol. 93, no. 4, pp. 960–967, 2021. DOI: https://doi.org/10.1016/j.gie.2020.07.060.

4. G. P. Ji, Y. C. Chou, D. P. Fan, G. Chen, H. Z. Fu, D. Jha, L. Shao. Progressively normalized self-attention network for video polyp segmentation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Springer, Strasbourg, France, pp. 142–152, 2021. DOI: https://doi.org/10.1007/978-3-030-87193-214.

5. J. Silva, A. Histace, O. Romain, X. Dray, B. Granado. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 283–293, 2014. DOI: https://doi.org/10.1007/s11548-013-0926-3.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual cross perception network with texture and boundary guidance for camouflaged object detection;Computer Vision and Image Understanding;2024-11

2. PolypNextLSTM: a lightweight and fast polyp video segmentation network using ConvNext and ConvLSTM;International Journal of Computer Assisted Radiology and Surgery;2024-08-08

3. Mscnet: Mask stepwise calibration network for camouflaged object detection;The Journal of Supercomputing;2024-07-27

4. Few-Shot Camouflaged Object Segmentation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Generalize Polyp Segmentation Via Inpainting Across Diverse Backgrounds and Pseudo-Mask Refinement;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3