Abstract
AbstractFenugreek is a globally important legume that is widely cultivated for its therapeutic benefits in most parts of the world. Seeds on the other hand have a poor germination and growth rate when exposed to salinity. The effect of ultrasonic exposure period on germination and early seedling behaviors of fenugreek seeds under salt stress was investigated in a laboratory experiment. During germination and early seedling stages, all tests were conducted at 40 kHz in a water bath ultrasonic device with two durations (10 and 20 min) under salinity stress using different concentrations of NaCl (0, 1000, 3000, and 5000 mg/l). The results revealed a substantial decrease in germination percentage, all growth criteria, with increasing NaCl concentration and a significant increase in biomass produced by the Fenugreek (total soluble protein, total soluble carbohydrate, and proline), all of which are thought to be mechanisms for salinity resistance. Ultrasonication of fenugreek seeds for 10 and 20 min has a significant impact on seed germination, early seedling development and biochemical constituents under normal and stress conditions. The genetic stability of fenugreek DNA content was affected by these different treatments. This variation was estimated by RAPD-PCR molecular marker, and resulted in a total polymorphism percentage of 49.72% from all the primers. All these different treatments caused variation in the physiological responses and DNA content. This variation enhanced with more ultrasonic and salt treatments. Hence, these stresses can be used for enhancing the variable metabolic processes in fenugreek plant and stimulate its medicinal properties.
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J Hazard Mater 170:357–365
2. Aladjadjiyan A (2002) Study of the influence of magnetic field on some biological characteristics of Zea mays. J Central Euro Agric 3(2):89–94
3. Aladjadjiyan A (2007) The use of physical methods for plant growing stimulation in Bulgaria. J Cent Eur Agric 3:369–380
4. Aladjadjiyan A (2012) Physical factors for plant growth stimulation improve food quality. In: Aladjadjiyan A (ed) Food Production: Approaches, Challenges and Tasks, Intech Open 145–168
5. Aniat-ul-Haq RV, Agnihotri RK (2010) Effect of osmotic stress (PEG) on germination and seedling survival of lentil (Lens culinaris Medik.). Res. J. Agric. Sci 1(3):201–204
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献