A Detailed PAH and Soot Model for Complex Fuels in CFD Applications

Author:

Eigentler FlorianORCID,Gerlinger Peter

Abstract

AbstractA model to predict soot evolution during the combustion of complex fuels is presented. On one hand, gas phase, $$\hbox {polycyclic aromatic hydrocarbon (PAH)}$$ polycyclic aromatic hydrocarbon (PAH) and soot chemistry are kept large enough to cover all relevant processes in aero engines. On the other hand, the mechanisms are reduced as far as possible, to enable complex computational fluid dynamics (CFD) combustion simulations. This is important because all species transport equations are solved directly in the $$\hbox {CFD}$$ CFD . Moreover, emphasis is placed on the applicability of the model for a variety of fuels and operating conditions without adjusting it. A kinetic scheme is derived to describe the chemical breakdown of short- and long-chain hydrocarbon fuels and even blends of them. $$\hbox {PAHs}$$ PAHs are the primary soot precursors which are modeled by a sectional approach. The reversibility of the interaction between different $$\hbox {PAH}$$ PAH classes is achieved by the introduction of $$\hbox {PAH}$$ PAH radicals. Soot particles are captured by a detailed sectional approach too, which takes a non-spherical growth of particles into account. In this way the modeling of surface processes is improved. The applicability and validity of the gas phase, $$\hbox {PAH}$$ PAH , and soot model is demonstrated by a large number of shock tube experiments, as well as in atmospheric laminar sooting flames. The presented model achieves excellent results for a wide range of operating conditions and fuels. One set of model constants is used for all simulations and no case-dependent optimization is required.

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3