High-speed turbulent gas jets: an LES investigation of Mach and Reynolds number effects on the velocity decay and spreading rate

Author:

Bonelli FrancescoORCID,Viggiano Annarita,Magi Vinicio

Abstract

AbstractThe aim of this work is the investigation of Mach and Reynolds numbers effects on the behaviour of turbulent gas jets in order to gain new insights into the fluid dynamic process of turbulent jet mixing and spreading. An in-house solver (Flow-Large Eddy and Direct Simulation, FLEDS) of the Favre-filtered Navier Stokes equations has been used. Compressibility has been analyzed by considering gas jets with Mach number equal to 0.8, 1.4, 2.0 and 2.6, and Re equal to 10,000. As concerns the influence of Re on gas jets, four cases have been investigated, i.e. $$\mathrm{Re} = 2500$$ Re = 2500 , 5000, 10,000 and 20,000, with Mach number equal to 1.4. The results show that, in accordance with previous experimental and numerical studies, the potential core length increases with Mach number. As regards the velocity decay and the spreading rate downstream of the potential core, compressibility effects are not relevant except for the jet with Mach number of 2.6. The normalized turbulent kinetic energy along the centerline as a function of the normalized streamwise distance shows a similar peak at the end of the potential core for all jets, except for the case with Mach number of 2.6. By increasing Re, the length of the potential core decreases up to the same value for all Re higher than 10,000. In the region downstream of the potential core, the velocity decay decreases as Re number increases from 10,000 to 20,000, whereas, for lower values of Re, the influence is almost negligible.

Funder

Politecnico di Bari

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3