A Novel One- and Zero-Dimensional Model for Turbulent Jet Ignition

Author:

Bardis KonstantinosORCID,Kyrtatos Panagiotis,Barro Christophe,Denisov Alexey,Wright Yuri Martin,Herrmann Kai,Boulouchos Konstantinos

Abstract

AbstractTurbulent jet ignition (TJI) is a promising combustion technology for burning highly diluted air-fuel mixtures. Computationally efficient models to assess the effect of the operating conditions and design parameters on the ignition propensity and timing are of paramount importance for the development of combustion systems employing TJI. To this end, a one-dimensional (1-D) jet model, which is based on the solution of the section integrated mass and momentum conservation equations, is derived in the present study. The model is extended with two additional transport equations for the turbulence intensity and the ignition precursor/tracer, that marks the ignition event. One-dimensional transient flamelet calculations are performed to generate tables for the ignition precursor source term that account for the turbulence and chemistry interaction. Further simplification of the model is carried out to obtain a novel penetration correlation and a computationally inexpensive Lagrangian ignition model. The extended jet model is hierarchically validated using available literature data for non-reactive and reactive jets, as well as experiments conducted in a state-of-the-art optically accessible prechamber. The derived model is able to reproduce both flow-related quantities (velocity and turbulence profiles, jet penetration) and the ignition delay time under different variations. This study also illustrates how numerical simulations in canonical configurations (one-dimensional flamelet) can be used in practical applications of TJI.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3