Numerical Investigation of Engine Performance and Emission Characteristics of an Ammonia/Hydrogen/n-Heptane Engine Under RCCI Operating Conditions

Author:

Xu Leilei,Bai Xue-Song

Abstract

AbstractThis paper examines the potential of using ammonia (NH$$_3$$ 3 ) as a primary fuel in heavy-duty engines for decarbonization, with some challenges yet to be addressed. It presents a numerical study of a Reactivity Controlled Compression Ignition engine, where pilot diesel is used to ignite the premixed ammonia/air mixture. The numerical model and combustion mechanism are validated against engine experimental results using methanol and iso-octane fuels and ignition delay times of ammonia/n-heptane mixtures measured in a rapid compression machine. The findings show that the engine can effectively operate with up to 50% of the total energy supplied by premixed ammonia, albeit with slightly elevated NO emissions compared to a diesel-fueled engine. Increasing ammonia further leads to lower combustion efficiency. Hydrogen can be utilized in the ammonia engine to enhance ammonia combustion; however, NO emissions increase further. Ammonia leakage primarily originates from regions near the cold wall, the center of the cylinder, and the crevice. N$$_2$$ 2 O mainly forms at the ammonia flame front. Emission of N$$_2$$ 2 O is therefore mainly due to flame front quenching near the wall.

Funder

Nordic Energy Research

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3