Structures of Laminar Lean Premixed H2/CH4/Air Polyhedral Flames: Effects of Flow Velocity, H2 Content and Equivalence Ratio

Author:

Shi Shuguo,Breicher Adrian,Schultheis Robin,Hartl Sandra,Barlow Robert S.,Geyer Dirk,Dreizler Andreas

Abstract

AbstractPolyhedral Bunsen flames, induced by hydrodynamic and thermo-diffusive instabilities, are characterized by periodic trough and cusp cellular structures along the conical flame front. In this study, the effects of flow velocity, hydrogen content, and equivalence ratio on the internal cellular structure of premixed fuel-lean hydrogen/methane/air polyhedral flames are experimentally investigated. A high-spatial-resolution one-dimensional Raman/Rayleigh scattering system is employed to measure the internal scalar structures of polyhedral flames in troughs and cusps. Planar laser-induced fluorescence of hydroxyl radicals and chemiluminescence imaging measurements are used to quantify the flame front morphology. In the experiments, stationary polyhedral flames with varying flow velocities from 1.65 to 2.50 m/s, hydrogen contents from 50 to 83%, and equivalence ratios from 0.53 to 0.64 are selected and measured. The results indicate that the positively curved troughs exhibit significantly higher hydrogen mole fractions and local equivalence ratios compared to the negatively curved cusps, due to the respective focusing/defocusing effect of trough/cusp structure on highly diffusive hydrogen. The hydrogen mole fraction and local equivalence ratio differences between troughs and cusps are first increased and then decreased with increasing measurement height from 5 to 13 mm, due to the three-dimensional effect of the flame front. With increasing flow velocity from 1.65 to 2.50 m/s, the hydrogen mole fraction and local equivalence ratio differences between troughs and cusps decrease, which is attributed to the overall decreasing curvatures in troughs and cusps due to the decreased residence time and increased velocity-induced strain. With increasing hydrogen content from 50 to 83%, the hydrogen mole fraction and local equivalence ratio differences between troughs and cusps are amplified, due to the enhanced effects of the flame front curvature and the differential diffusion of hydrogen. With increasing equivalence ratio from 0.53 to 0.64, a clear increasing trend in hydrogen mole fraction and equivalence ratio differences between troughs and cusps is observed at constant flow velocity condition, which is a trade-off result between increasing effective Lewis number and increasing curvatures in troughs and cusps.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Gottfried Wilhelm Leibniz-Preis

Hochschule Darmstadt University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3