Probabilistic Modeling and Uncertainty Quantification of Detailed Combustion Simulation for a Swirl Stabilized Spray Burner

Author:

Enderle Benedict,Rauch Bastian,Grimm Felix,Eckel Georg,Aigner Manfred

Abstract

AbstractTo enable risk informed decisions in the simulation-based design and development of novel combustors, uncertainties in the simulation results must be considered. However, due to the high computational costs for their quantification, these uncertainties are commonly not taken into account. Therefore, this work aims at applying an efficient methodology for uncertainty quantification based on Polynomial Chaos Expansion to a semi-technical spray burner reflecting characteristics typically found in modern aeroengine combustors. This requires accurate treatment of the multicomponent liquid fuel, a combustion model relying on finite rate chemistry and a scale resolving hybrid turbulence model to account for highly unsteady flow features and combustion. To overcome the need for costly experimental data for the spray boundary conditions, an algebraic primary breakup model is utilized. The resulting reduction in a priori information is compensated through probabilistic modeling and uncertainty quantification. Due to their importance in the design process, temperature distribution in the gas phase as well as the flame position are considered as the primary quantities of interest. For these quantities of interest, moderate uncertainties are found in the probabilistic simulation results. Further, the predictive capability of the simulation model under uncertainties is quantitively assessed by defining accurary metrics for the gas phase temperature prediction. The study further reveals that the imposed input uncertainties affect quantities of interest in both the dispersed and the gas phase through phase coupling effects.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3