Author:
Ramos Eliaquim M.,Darze Gabriella M.,do Nascimento Francisco R. T.,Faccini José Luiz H.,Giraldi Gilson A.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering
Reference50 articles.
1. Alkinani, H., Al-Hameedi, A.T., Dunn-Norman, S., Flori, R., Alsaba, M., Amer, A.: Applications of artificial neural networks in the petroleum industry: a review. In: SPE Middle East Oil and Gas Show and Conference (2019)
2. Andrianov, N.: A machine learning approach for virtual flow metering and forecasting (2018). arXiv:1802.05698
3. Ansell, P., Balajewicz, M.: Separation of unsteady scales in a mixing layer using empirical mode decomposition. AIAA J. 55(2), 419–434 (2017)
4. Bai, Z., Kaiser, E., Proctor, J.L., Kutz, J.N., Brunton, S.L.: Dynamic mode decomposition for compressive system identification (2017). arXiv:1710.07737
5. Bao, A., Gildin, E.: Data-driven model reduction based on sparsity-promoting methods for multiphase flow in porous media. In: SPE Latin Am. and Caribbean Petroleum Eng. Conf. (2017). https://doi.org/10.2118/185514-MS
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献