A Priori Analysis on Deep Learning of Filtered Reaction Rate

Author:

Shin JunsuORCID,Hansinger Maximilian,Pfitzner Michael,Klein Markus

Abstract

AbstractA filtered reaction rate model driven by deep learning is proposed and analyzed a priori in the context of large eddy simulation (LES). A deep artificial neural network (ANN) is trained on the explicitly filtered reaction rate source term extracted from a database comprised of turbulent premixed planar flame direct numerical simulations (DNSes) employing single-step chemistry. The filtered DNS database to be used for the training of the ANN covers a wide range of turbulence intensities and LES filter widths. An interpretation technique of deep learning is employed to search the principal input parameters in the high dimensional database to alleviate the model complexity. The deep learning filtered reaction rate model is then tested on the unseen filtered planar flames featuring untrained turbulence intensities and LES filter widths, in conjunction with another canonical type of flame configuration that it has not been trained on. The deep learning filtered reaction rate model achieves good agreement with the filtered DNS results and also provides a quantitatively accurate surrogate model when compared to existing algebraic models and other combustion models from the literature.

Funder

Deutsche Forschungsgemeinschaft

Digitalization and Technology Research Center of the Bundeswehr

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Reference54 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D. G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous distributed systems, arXiv preprint, 1603.04467 (2016). https://arxiv.org/abs/1603.04467. Software available from tensorflow.org.

2. Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N.: A-priori and a-posteriori analysis of algebraic flame surface density modeling in the context of Large Eddy Simulation of turbulent premixed combustion. Numer. Heat Transf. A 71, 153–171 (2017). https://doi.org/10.1080/10407782.2016.1257309

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007)

4. Blasco, J.A., Fueyo, N., Dopazo, C., Ballester, J.: Modelling the temporal evolution of a reduced combustion chemical system with an articial neural network. Combust. Flame 113(1–2), 38–52 (1998). https://doi.org/10.1016/S0010-2180(97)00211-3

5. Blasco, J.A., Fueyo, N., Dopazo, C., Chen, J.-Y.: A self-organizing-map approach to chemistry representation in combustion applications. Combust. Theory Model. 4(1), 61–76 (2000). https://doi.org/10.1088/1364-7830/4/1/304

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3