A Wall-Adapted Anisotropic Heat Flux Model for Large Eddy Simulations of Complex Turbulent Thermal Flows

Author:

Ries FlorianORCID,Li Yongxiang,Nishad Kaushal,Dressler Louis,Ziefuss Matthias,Mehdizadeh Amirfarhang,Hasse Christian,Sadiki Amsini

Abstract

AbstractIn this paper, a wall-adapted anisotropic heat flux model for large eddy simulations of complex engineering applications is proposed. First, the accuracy and physical consistency of the novel heat flux model are testified for turbulent heated channel flows with different fluid properties by comparing with conventional isotropic models. Then, the performance of the model is evaluated in case of more complex heat and fluid flow situations that are in particular relevant for internal combustion engines and engine exhaust systems. For this purpose large eddy simulations of a strongly heated pipe flow, a turbulent inclined jet impinging on a heated solid surface and a backward-facing step flow with heated walls were carried out. It turned out that the proposed heat flux model has the following advantages over existing model formulations: (1) it accounts for variable fluid properties and anisotropic effects in the unresolved temperature scales, (2) no ad-hoc treatments or dynamic procedure are required to obtain the correct near-wall behavior, (3) the formulation is consistent with the second law of thermodynamics, and (4) the model has a similar prediction accuracy and computational effort than conventional isotropic models. In particular, it is shown that the proposed heat flux model is the only model under consideration that is able to predict the direction of subgrid-scale heat fluxes correctly, also under realistic heat and fluid flow conditions in complex engineering applications.

Funder

German Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3