Flow Separation Dynamics in Three-Dimensional Asymmetric Diffusers

Author:

Hajaali Arthur,Stoesser ThorstenORCID

Abstract

AbstractThe mean and instantaneous flow separation of two different three-dimensional asymmetric diffusers is analysed using the data of large-eddy simulations. The geometry of both diffusers under investigation is based on the experimental configuration of Cherry et al. (Int J Heat Fluid Flow 29(3):803–811, 2008). The two diffusers feature similar area ratios of $$\mathrm{AR}=4.8$$ AR = 4.8 and $$\mathrm{AR}=4.5$$ AR = 4.5 while exhibiting differing asymmetric expansion ratios of $$\mathrm{AER}=4.5$$ AER = 4.5 or $$\mathrm{AER}=2.0$$ AER = 2.0 , respectively. The Reynolds number based on the averaged inlet velocity and height of the inlet duct is approximately $${\textit{Re}}=10{,}000$$ Re = 10 , 000 . The time-averaged flow in both diffusers in terms of streamwise velocity profiles or the size and location of the mean backflow region are validated using experimental data. In general good agreement of simulated results with the experimental data is found. Further quantification of the flow separation behaviour and unsteadiness using the backflow coefficient reveals the volume portion in which the instantaneous reversal flow evolves. This new approach investigates the cumulative fractional volume occupied by the instantaneous backflow throughout the simulation, a power density spectra analysis of their time series reveals the periodicity of the growth and reduction phases of the flow separation within the diffusers. The dominating turbulent events responsible for the formation of the energy-containing motions including ejection and sweep are examined using the quadrant analysis at various locations. Finally, isourfaces of the Q-criterion visualise the instantaneous flow and the origin and fate of coherent structures in both diffusers.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3